Vergleich der Heteropolyanionen [PM09O31(H2O)3]³⁻, [P2M018O62]⁶⁻ und [P2W18O62]⁶⁻

VON HEDWIG D'AMOUR

Fachbereich Geowissenschaften der Universität, D 355 Marburg, Lahnberge, Deutschland (BRD)

(Eingegangen am 11. April 1975; angenommen am 7. Juli 1975)

The crystal structure of $Na_3[PMo_9O_{31}(H_2O)_3]$. nH_2O ($n \sim 7$) (I), $Na_4H_2[P_2Mo_{18}O_{62}]$. nH_2O ($n \sim 20$) (II) and $(NH_4)_6[P_2W_{18}O_{62}]$. nH_2O $(n \sim 9)$ (III) {isomorphous with $K_6[P_2W_{18}O_{62}]$. $14H_2O$ [Dawson, Acta Cryst. (1953). 6, 113-126]} have been determined from three-dimensional X-ray data (721, 5201 and 8854 independent reflexions respectively without absorption correction) and were refined to R-indices of 8.6% (I), 8.9% (II) and 11.4% (III), respectively, with anisotropic temperature factors for the W or Mo atoms and isotropic ones for the lighter atoms. The crystal data are, for (1): a=b=14.210 (6), c=10.787 (6) Å, $P6_3$, Z=2, $D_x=2.98$ g cm⁻³; for (II): a=23.14 (1), b=13.55 (1), c=23.15 (1) Å, $\beta=100.3$ (1)°, C^2/c , Z = 4, $D_x = 2.85$ g cm⁻³; for (III): a = 20.09 (1), b = 14.70 (1), c = 12.83 (1) Å, $\alpha = 116.9$ (1)°, $\beta = 98.3 (1)^\circ$, $\gamma = 71.5 (1)^\circ$, PT, Z = 2, $D_x = 4.82$ g cm⁻³. The structure of the [PMo₉O₃₁(H₂O)₃]³⁻ polyanion can be deduced from that of the 'Keggin molecule' [PW12O40]3- from which three corner-sharing WO6 octahedra have been removed. Each of the $[P_2M_{18}O_{62}]^{6-}$ polyanions consists of two $[PM_9O_{28}O_{6/2}]$ moieties, which are connected in $[P_2W_{18}O_{62}]^{6-}$ by a pseudo-mirror plane, in $[P_2Mo_{18}O_{62}]^{6-}$ by a twofold axis. In the W polyanion the six 'inner' W atoms are nearly coplanar ($\Delta Z = 0.08$ Å), whereas in both Mo polyanions the corresponding six Mo atoms form a zigzag ring ($\Delta Z \sim 0.5$ Å), resulting in two sets of corner-sharing Mo-Mo distances of 3.697 and 3.906 Å in (I) and 3.677 and 3.829 Å in (II). In (III) these W-W distances vary only between 3.693 and 3.726 Å. The edge-sharing M-M distances are very similar: 3.378 in (I), 3.375 in (II) and 3.371 Å in (III). M-O distances are: 1.61-1.74 Å (terminal O atoms), 1.69-2.17 Å (O bonded to two M atoms), 2.31-2.45 Å (O bonded to two or three M atoms and one P atom). Only the Na⁺ ions could be located definitely. The assignment of Fourier peaks to NH⁺₄ ions or H₂O molecules may be erroneous. The water molecules seem to be bonded in a zeolite-like manner in all three compounds and the number of H_2O per formula unit could not be determined exactly by X-ray structure analysis.

Einleitung

Bei meinen Versuchen, 12-Molybdänphosphorsäure in kristalliner Form zu erhalten, kristallisierten statt der erwarteten Substanz Salze der 9-Molybdänphosphorsäure und 18-Molybdänphosphorsäure aus. Die Strukturbestimmungen zeigten, dass die Mo-Lagen z.T. beträchtlich von den Lagen der W-Atome in der 18-Wolframdiphosphorsäure abwichen, die von Dawson (1953) aus Pattersonprojektionen nur grob bestimmt worden waren. Um festzustellen, wieweit diese Abweichungen auf der Ungenauigkeit der Dawson'schen Strukturbestimmung oder auf einem unterschiedlichen Verhalten der Mo- und W-Atome beruhen, wurde die Struktur des Polyanions der 18-Wolframdiphosphorsäure überprüft. Über die Ergebnisse dieser Strukturbestimmungen am Na₃[PMo₉O₃₁(H₂O)₃].nH₂O ($n \sim 7$), $Na_4H_2[P_2Mo_{18}O_{62}].nH_2O$ (*n*~20) und

 $(NH_4)_6[P_2W_{18}O_{62}].nH_2O$ $(n \sim 9)$ wird hier berichtet. Gleichzeitig wurde die Struktur des Polyanions der 9-Molybdänphosphorsäure auch von Strandberg (1974) bestimmt. Die Ergebnisse dieser beiden Strukturbestimmungen werden u.a. in dieser Arbeit miteinander vergleichen. Über den Vergleich der Polyanionen $[PMo_9O_{31}(H_2O)_3]^{3-}$ und $[P_2Mo_{18}O_{62}]^{6-}$ mit anderen Heteropolyanionen wurde bereits kurz berichtet (Allmann & d'Amour, 1974).

Experimentelles

Na₃[PMo₉O₃₁(H₂O)₃].nH₂O und Na₄H₂[P₂Mo₁₈O₆₂].nH₂O wurden aus einer wässrigen Lösung (ca. 70 ml) von ca. 0,5 g Na₂HPO₄.2H₂O und ca. 1 g Na₂MoO₄ dargestellt (pH ~ 3–4). Nach längerem Stehen bei Zimmertemperatur schieden sich farblose Kristalle von Na₃[PMo₉O₃₁(H₂O)₃].nH₂O mit hexagonalem bipyramidalem Habitus ab. [Strandberg (1974) berichtet von gelblichen, an der Luft instabilen Kristallen.] Unter dem Mikroskop konnte man noch eine zweite, gelbe Phase erkennen, an der jedoch keine Kristallflächen zu sehen waren; wie sich später bei der Strukturbestimmung herausstellte, handelte es sich dabei um Kristalle von Na₄H₂[P₂Mo₁₈O₆₂].nH₂O. Das Verhältnis der Ausbeute an

 $Na_3[PMo_9O_{31}(H_2O)_3].nH_2O: Na_4H_2[P_2Mo_{18}O_{62}].nH_2O$ war > 10:1. Die Kristalle von $(NH_4)_6[P_2W_{18}O_{62}].nH_2O$ wurden von Professor Dr J. Fuchs (Berlin) nach einer Vorschrift von Wu (1920) hergestellt. Es wurden trotz mehrmaligen Umkristallisierens zwei Phasen erhalten: triklin verzerrte, durchsichtige, farblose bis leicht grünliche, plättchenförmige Kristalle (Phase I) und durchsichtige schwach hellblau gefärbte Kristalle mit rhomboedrischem Habitus (Phase II). Zur Strukturbestimmung wurde ein Kristall der Phase I benutzt, von Phase II wurden nur die Gitterkonstanten begestellt.

stimmt: a=b=37,65, c=13,13 Å, $\alpha=\beta=90^{\circ}$, $\gamma=120^{\circ}$. Auf einem Philips Vierkreisdiffraktometer PW 1100 wurden mit Mo K α -Strahlung (Graphitmonochromator) die Gitterkonstanten bestimmt und die Reflexintensitäten ($\omega-2\theta$ scan) bestimmt. Es erfolgte die übliche Lorentz-Polarisations-Korrektur, aber keine

Absorptionskorrektur. In Tabelle 1 sind die Kristall-

daten der drei untersuchten Substanzen zusammen-

Strukturbestimmung

(1) Die Struktur von $Na_3[PMo_9O_{31}(H_2O)_3].nH_2O$ $(n \sim 7)$ wurde mit Pattersonmethoden bestimmt. Dabei wurde von der Annahme, dass es sich um ein Salz der 12-Molybdänphosphorsäure ('Kegginmolekül') handelte, ausgegangen. Symmetriebetrachtungen ergaben, dass das P-Atom auf der dreizähligen Achse liegen, d.h. das Polyanion die Eigensymmetrie 3 haben musste. Die Verfeinerung der Temperaturfaktoren der Mo-Atome ergab jedoch für ein Mo-Atom in der asymmetrischen Einheit einen ungewöhnlich grossen Wert von B > 10 Å², während die B-Werte der übrigen Atome zwischen 1 und 2 Å² lagen. Die Lagen der O-Atome des Polyanions wurden aus einer Differenz-Fouriersynthese bestimmt und führten unter Berücksichtigung der unterschiedlichen B-Werte der Mo-Atome (d.h. nur drei Mo-Atome pro asymmetrische Einheit) zu der Formel $[PMo_9O_{34}]^{9-}$ bzw. zu der protonierten Form $[PMo_9O_{34}H_x]^{x-9}$. Die Elektronendichtemaxima von O(4) und O(11) waren darin etwas gestreckt, die von O(1), O(8) und O(12) sogar aufgespalten (je zwei Maxima in etwa 0,4–0,8 Å Entfernung mit folgenden Koordinaten: O(1): -0.17. 0,59, -0,40 und -0,23, 0,57, -0,40; O(8): 0,06, 0,64,-0.03 und 0.05, 0.66, -0.03; O(12): -0.03, 0.54, 0,19 und -0,07, 0,54, 0,19).

Ausserdem konnte der Differenz-Fouriersynthese die Lage des Na⁺-Ions und von drei kristallographisch verschiedenen H_2O -Molekülen entnommen werden.

Mit anisotropen Temperaturfaktoren für die Mo-Atome und isotropen für alle anderen Atome konnte die Struktur bis zu einem R-Wert von 8,6% verfeinert werden. Die Atomparameter wurden bereits veröffentlicht (d'Amour & Allmann, 1974). Gleichzeitig wurde von Strandberg (1974) mit 1930 Reflexen eine genauere Strukturbestimmung durchgeführt (R = 3,7%). Bis auf die Lage der H₂O-Moleküle stimmen die Ergebnisse der beiden Strukturbestimmungen miteinander überein. Wegen der etwas grösseren Zelle bei Strandberg (siehe Tabelle 2) scheint es sich dort um wasserreichere Kristalle zu handeln. Nach Strandberg (1974) unterscheiden sich jedoch fast alle Kristalle etwas in ihrer Zellgrösse. Hier sollen nur die Koordinaten der Mo-Atome und des P-Atoms der beiden Strukturbestimmungen miteinander vergleichen werden.

Tabelle 2. Vergleich der absoluten Mo-Koordinaten in Å der beiden Strukturbestimmungen des [PM0₉O₃₁(H₂O)₃]³⁻-Polyanions

 $\bar{\sigma}(x, y, z)$ ist die über alle drei Richtungen gemittelte Standardabweichung in Å. Fixpunkt ist Z[Mo(3)]. Erster Wert: (d'Amour & Allmann, 1974);* a=14,21, c=10,787 Å; zweiter Wert: (Strandberg, 1974); a=14,248, c=10,83 Å.

	Х	Y	Ζ	$\bar{\sigma}(x,y,z)$
Mo(1)	3,035	-0,767	-0,289	0,005
	3,042	-0,754	-0,325	0,001
Mo(2)	3,874	2,878	0,274	0,005
	3,870	2,892	0,280	0,001
Mo(3)	1,310	2,257	3,141	0,005
	1,292	2,268	3,141	0,001
Р	$\frac{2}{3}a$	$\frac{1}{3}a$	0,24	
	$\frac{2}{3}a$	$\frac{1}{3}a$	0,169	

* In der Koordinatenliste von d'Amour & Allmann (1974) fehlt das Vorzeichen (-) der Z-Koordinate des P-Atoms.

(2) Die Struktur des $[P_2Mo_{18}O_{62}]^{6-}$ -Polyanions wurde mit direkten Methoden (Programm: *MULTAN*, Germain, Main & Woolfson, 1971) bestimmt, wobei 499 Reflexe mit den grössten *E*-Werten benutzt wurden.

Tabelle 1. Kristalldaten

	$Na_{3}[PMo_{9}O_{31}(H_{2}O)_{3}].nH_{2}O$	$Na_4H_2[P_2Mo_{18}O_{62}].nH_2O$	$(NH_4)_6[P_2W_{18}O_{62}].nH_2O_{18}O_{1$
Anzahl gemessener Reflexe	4315	10447	10025
Anzahl symmetrieunabhängiger			
Reflexe	721	5201	8854
davon unbeobachtet $F_o < F_{\min}$	80	1252	972
davon $F_c > F_{\min}$	47	198	460
θ_{\max} (°)	21	23	23
a (Å)	14,210 (6)	23,14 (1)	20,09 (1)
$b(\mathbf{A})$	14,210 (6)	13,55 (1)	14,70 (1)
c (Å)	10,787 (6)	23,15 (1)	12,83 (1)
α (°)	90	90	116,9 (1)
β (°)	90	100,28 (8)	98,3 (1)
γ (°)	120	90	71,5 (1)
Zellvolumen (Å ³)	1886	7135	3189
Ζ	2	4	2
Raumgruppe	P63	C2/c	$P\overline{1}$
$D_x (g \text{ cm}^{-3})$	2,98	2,85	4,82
<i>R</i> -Wert (%)	8,6	8,9	11,4
Eigensymmetrie des Polyanions	3	2	1
Kristallgrösse (mm)	$0,08 \times 0,05 \times 0,05$	$0,08 \times 0,07 \times 0,07$	0,5×0,08×0,2

 $\bar{\sigma}(x,y,z)$ ist der über x, y, z gemittelte Absolutwert der Standardabweichung. $B(Mo) = \frac{1}{3}(B_{11} + B_{22} + B_{33})$. Z ist der Abstand von der besten Ebene durch Mo(7)-Mo(8)-Mo(9).

	$10^4 \cdot x$	10⁴ . <i>y</i>	10 ⁴ . <i>z</i>	$10^3 \bar{\sigma}(x, y, z)$	$B(Å^2)$	Z (Å)
P(1)	789	6091	2188	5 Å	-0.18(8)	2.94
Mo(1)	1194 4	3853 5	2865 5	2	0.73	2,24
$M_0(2)$	273 9	3818 3	1567 1	2	0.72	3 32
$M_0(3)$	14193	6172 7	3686.8	2	0.72	3,36
$M_0(4)$	43.6	6149 5	749 3	2	0.73	2,85
Mo(5)	1216.0	8286.4	2917 7	2	0,75	2,89
Mo(6)	233.0	8290,9	1484 0	2	0.80	3,32
$M_0(7)$	1557.4	5216.6	1109.6	2	0,00	0,0
Mo(8)	1848.0	7535 8	1637.6	2	0,90	0,0
$M_0(9)$	2314 3	5554 2	2492 3	2	0.91	0,0
0(1)	-347	3653	1889	15	0,01 0,6(2)	5.05
$\tilde{O}(2)$	787	5368	1007	15	11(3)	4,96
$\tilde{O}(3)$	- 493	273	1630	15	0.9(3)	5.06
$\tilde{O}(4)$	217	2875	1080	16	13(3)	2.87
Õ(5)	830	3172	2180	15	0.9(3)	2.84
Ō(ć	1480	2871	3282	15	1.1(3)	2.74
0(7)	1945	5979	4289	15	0.9(3)	2.93
O (8)	1580	7558	3587	14	0.6(2)	2.89
0(9)	1409	9412	3150	16	1.3 (3)	2,75
O(10)	272	9408	1180	16	1.5 (3)	2.87
O (11)	62	754>	763	14	0,7 (3)	2,83
O(12)	-279	5974	42	16	1,4 (3)	2,71
O(13)	- 27	4894	،093	15	1,1 (3)	3,41
O(14)	622	501.	2265	14	0,5 (2)	3,39
O(15)	1225	4881	? 425	15	0,8 (3)	3,46
O(16)	899	6656	2.773	14	0,6 (2)	3,40
O(17)	601	8531	2272	14	0,5 (2)	3,45
O(18)	324	6639	1733	14	0,5 (2)	3,41
O(19)	1079	4306	1304	15	1,0 (3)	1,26
O(20)	1814	4337	2597	14	0,5 (2)	1,21
O(21)	2045	5988	3125	15	0,8 (3)	1,33
O(22)	1735	7997	2447	15	1,1 (3)	1,21
O(23)	1120	7984	1400	15	1,1 (3)	1,30
0(24)	805	5929	736	15	0,6 (3)	1,19
O(25)	1390	6095	1941	13	0,2 (2)	1,35
O(26)	1/68	4/61	496	10	1,4(3)	-1,19
O(27)	2207	4949	1000	15	0,0(3)	-0,75
O(20)	2990	5151	21/1	10	1,1(3)	- 1,14
O(29)	24/0	0/23	1441	17	18(3)	-0,73
O(31)	1997	6626	1064	15	1,0(3)	-0.77
$N_2(1)$	2283	86	- 21	30	1,1(3) 107(7)	-0.77
$N_{a}(2)$	4017	603/	022	40	149(11)	
$H_{0}(1)$	1274	2575	314	40	77(8)	
$H_{2}O(2)$	2821	3411	381	40	92(1)	
$H_{2}O(3)$	2671	8569	325	40	8.4 (9)	
$H_{2}O(4)$	3900	8640	461	30	5.9 (6)	
H ₂ O(5)	1738	307	837	40	8.0 (9)	
H ₂ O(6)	3105	5922	940	30	5.1 (6)	
H₂O(7)	4499	6095	1597	50	11,1 (1,3)	
H ₂ O(8)	858	1146	2039	50	11,1 (1,3)	
H₂O(9)	2008	2637	1550	30	5,4 (6)	
$H_2O(10)$	4017	6570	- 29	50	12,8 (1,2)	

Anisotrope Temperaturfaktoren der Mo-Atome in Å². Die Werte beziehen sich auf den Ausdruck

 $\exp \left[-\frac{1}{4}(h^2 a^{*2} B_{11} + \cdots + 2hk a^* b^* B_{12} + \cdots)\right].$

	B_{11}	B ₂₂	B ₃₃	<i>B</i> ₁₂	B ₁₃	B ₂₃	ō
Mo(1)	0,70	0,50	0,99	0,06	-0,01	0,14	0,07
Mo(2)	0,85	0,43	0,87	0,03	0,04	-0,23	0,07
Mo(3)	0,81	0,90	0,44	-0,14	-0,08	-0,2	0,06
Mo(4)	0,99	0,80	0,41	0,10	-0,08	-0,06	0,07
Mo(5)	1,04	0,51	0,73	-0,34	0,12	-0,16	0,07
Mo(6)	1,08	0,54	0,79	0,19	0,18	0,17	0,07
Mo(7)	1,02	1,10	0,85	-0,04	0,37	0,27	0,07
Mo(8)	0,75	0,94	1,02	0,15	0,37	0,11	0,07
Mo(9)	0,60	1,17	0,97	0,01	0,12	0,03	0,07

Tabelle 4. Atomparameter von $(NH_4)_6[P_2W_{18}O_{62}].nH_2O$ $\bar{\sigma}(x, y, z)$ ist der über x, y, z gemittelte Absolutwert der Standardabweichungen in 10⁻² Å. $B(W) = \frac{1}{3}(B_{11} + B_{22} + B_{33}).$ Z ist der Abstand von der Ebene durch W(13)-W(14)-W(15). Die Atomnumerierung wurde von Dawson (1953) übernommen.

	10^3 . x	$10^3 \cdot y$	$10^{3} \cdot z$	$\bar{\sigma}(x,y,z)$	$B(\text{\AA}^2)$	$Z(\text{\AA})$
W(1)	199,7	- 70,4	- 59,0	0,3	1,36	- 6,83
W(2)	211,1	192,8	-23,1	0,3	1,52	-3,07
W(3) W(4)	322,3	46,4	514,7	0,3	1,68	-6,/6
W(5)	73 5	77 4	184 7	0,3	1,47	-6.75
W(6)	87,7	339,4	223,9	0.3	1,54	- 3.01
W(7)	436,6	-87,2	292,7	0,3	1,57	- 6,82
W(8)	452,1	170,7	321,3	0,3	1,34	- 3,07
W(9)	373,5	-139,6	-7,5	0,3	1,37	-6,72
W(10) W(11)	385,7	120,5	24,9 457 5	0,3	1,57	- 2,99 - 6.83
W(12)	148.1	386.0	495.9	0.3	1.45	- 3.09
W(13)	260,8	527,4	460,6	0,3	1,67	0
W(14)	205,5	470,9	182,9	0,3	1,79	0
W(15) W(16)	378,7	396,1	239,1	0,3	1,87	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
W(10) W(17)	163.1	-210.1	95.1	0,3	2,00	-9.83
W(18)	338,6	-288,8	137,2	0,3	1,69	-9,81
P(1)	255	-16	230	2	1,35	-6,91
P(2)	270	261	266	2	0,85	-2,92
O(1)	313	13	321	4	1,8(7)	- 6,44
O(3)	272	-29	107	4	1,0 (6)	-6.41
O(4)	249	-120	215	4	0,7 (6)	-8,42
O(5)	448	49	328	5	2,3 (8)	-4,91
O(0)	344 126	260	535 467	5	2,3(8) 24(8)	-4,86
O(8)	71	217	227	5	2,4 (8)	-4.94
O(9)	217	52	-65	5	2,3 (8)	-4,91
O(10)	372	-17	- 16	5	1,8 (7)	-4,91
O(11)	125	30 129	4/	4	1,3(6)	-6,40
O(12)	418	-103	133	6	3.7(9)	-6.47
O(14)	191	-178	-17	5	2,1 (8)	- 8,63
O(15)	107	- 66	157	4	1,1 (6)	- 8,46
O(16)	163	- 15	415	6	2,7 (9)	- 8,47
O(17)	352	-251	25	5	1,6 (7)	-8.60
O(19)	399	-210	232	5	2,1 (8)	- 8,60
O(20)	292	- 149	-115	5	1,6 (7)	-7,02
O(21)	413	-40	446	5	1,7(7)	-7,02
O(23)	168	-214	257	5	2.5(10)	-0.38
O(24)	259	- 316	66	4	1,5(7)	-0,38
O(25)	298	- 280	272	4	1,6 (7)	-0,39
O(26)	441	- 229	- 108	5	2,0 (8)	-7,07
O(27)	-10	- 109	- 194	5	1,8(7) 20(8)	-7,08
O(29)	84	167	581	5	1,9 (8)	-7.15
O(30)	339	56	649	5	2,1 (7)	- 7,09
O(31)	524	-160	312	6	4,8 (11)	-7,24
O(32)	111	-423 -277	18	5	20(8)	-0,46
O(34)	208	-201	468	5	3.3 (9)	-0.44
O(-1)	195	280	303	4	0,9 (6)	-3,36
O(-2)	325	220	347	4	1,0 (6)	-3,44
O(-3)	280	182	138	3	0,5(5)	-3,42
O(-11)	135	239	280 79	4	1,3(7)	-3.45
O(-12)	237	327	552	4	1,5 (7)	-3,47
O(-13)	433	115	163	5	1,9 (8)	-3,33
O(-14)	217	340 442	54	5	3,2 (9)	-1,24
O(-16)	185	490	487	4 5	2,1 (7)	-1.21
O(-17)	318	431	523	4	1,6 (7)	-1,23
O(-18)	381	269	100	5	2,2 (8)	-1,19
O(-19)	427	307	311	4	1,4 (6)	-1,25
O(-20)	200	147	- 12	4	0,9 (0)	-2,/0

.

Tabelle 4 (Fort.)

O(21)	120	254	181	Λ	12(6)	2 77
O(-21)	430	415	201	4	1,5(0) 16(7)	- 2,11
O(-22)	205	415	242	3	1,0(7)	- 2,70
O(-23)	205	307	343	4	1,8 (7)	-0,69
O(-24)	298	466	1/1	4	0,9 (6)	-0,69
O(-25)	345	507	38/	4	1,5 (7)	0,71
O(-26)	452	84	- 69	5	2,5 (8)	- 2,59
O(-27)	172	202	-141	5	2,6 (9)	- 2,71
O(-28)	6	386	169	5	2,8 (8)	-2,74
O(-29)	104	472	627	5	1,8 (7)	-2,76
O(-30)	354	361	693	5	1,9 (8)	-2,75
O(-31)	542	162	334	5	2,8 (9)	-2,60
O(-32)	444	434	219	5	3,2 (9)	1,16
O(-33)	160	556	123	5	2,6 (9)	1,18
O(-34)	255	642	568	6	4,5 (11)	1.12
N(1)	847	5	325	10	5,1 (18)	
N(2)	231	466	890	10	5,8 (18)	
N(3)	540	646	48	7	3,4 (12)	
N(4)	888	311	254	7	3,7 (12)	
N(5)	407	692	439	10	6,2 (20)	
N(6)	65	724	359	13	9,9 (25)	
$H_2O(1)$	345	278	848	7	6 (1)	
$H_2O(2)$	607	427	267	12	13 (3)	
$H_2O(3)$	309	878	685	12	12 (3)	
$H_2O(4)$	738	391	199	11	10 (2)	
$H_{2}O(5)$	491	400	750	12	12 (3)	
H ₂ O(6)	35	649	535	9	7 (2)	
$H_{2}O(7)$	42	117	872	7	5 (1)	
H-O(8)	92	409	811	12	14 (3)	
H ₂ O(9)	2	657	109	12	13 (3)	
H₂O(8) H₂O(9)	92 2	409 657	811 109	12 12	14 (3) 13 (3)	

Anisotrope Temperaturfaktoren der W-Atome in Å². Die Werte beziehen sich auf den Ausdruck

 $\exp\left[-\frac{1}{4}(h^2a^{*2}B_{11}+\cdots+2hka^*b^*B_{12}+\cdots)\right].$

	B_{11}	B22	B ₃₃	B_{12}	B ₁₃	B ₂₃	ō
W(1)	1,17	1,22	1,70	-0,40	0,91	0,55	0,09
W(2)	1,17	1,45	1,93	-0,36	0,77	0,90	0,09
W(3)	1,89	1,34	1,83	-0,15	0,89	0,83	0,09
W(4)	1,37	1,29	1,75	-0,35	0,72	0,61	0,09
W(5)	0,84	1,25	2,51	-0,21	1,25	0,62	0,09
W(6)	0,81	1,30	2,50	0,01	0,95	0,91	0,09
W(7)	1,11	1,35	2,25	0,12	0,78	0,79	0,10
W(8)	0,77	1,62	2,32	-0,27	0,78	0,87	0,09
W(9)	1,10	1,21	1,80	0,01	1,26	0,56	0,09
W(10)	0,98	1,65	2,06	-0,32	1,19	0,82	0,09
W(11)	1,69	1,30	2,11	-0,12	1,65	0,62	0,10
W(12)	1,20	1,02	2,13	-0,05	1,34	0,37	0,09
W(13)	1,82	0,88	2,32	-0,44	0,86	0,61	0,09
W(14)	1,59	1,15	2,62	-0,44	0,52	1,12	0,09
W(15)	1,43	1,45	2,72	-0,70	0,97	0,93	0,10
W(16)	2,73	1,20	2,27	-0,49	1,33	0,90	0,10
W(17)	1,75	1,10	2,46	-0,57	1,08	0,71	0,10
W(18)	1,79	0,98	2,29	0,06	1,14	0,79	0,10

Für vier von 32 Vorzeichensets mit dem höchsten Wert für 'the combined figure of merit' wurde eine *E*-Fouriersynthese gerechnet. Die *E*-Fouriersynthese mit dem zweitbesten 'combined figure of merit' ergab eindeutig die Lagen der neun symmetrieunabhängigen Mo-Atome in der Zelle. Dabei stellte sich heraus, dass zwei $[PMo_9O_{28}O_{6/2}]^{3-}$ -Hälften über eine zweizählige Achse zu dem Dimeren $[P_2Mo_{18}O_{62}]^{6-}$ verknüpft waren. Die Lagen aller restlichen Atome wurden aus Differenz-Fouriersynthesen bestimmt. Von 12 Elektronendichtemaxima, die nicht O-Atomen des Polyanions entsprachen, wurden zwei auf Grund kurzer Abstände zu O-Atomen des Polyanions als Na⁺-Ionen gedeutet. Die Struktur konnte mit anisotropen Temperaturfaktoren für die Mo-Atome und isotropen für alle anderen bis zu einem *R*-Wert von 8,9% verfeinert werden. Wegen der fehlenden Absorptionskorrektur wurden in den abschliessenden Rechnungen alle F_o -Werte mit exp $[10^{-4}(-3,28h^2+36,16k^2+4,76l^2$ -0,57kl+8,16hl-0,40hk)] multipliziert. Die verwendeten Konstanten entsprechen den Abweichungen der gemittelten β_{ik} -Werte der Mo-Atome von der Kugelsymmetrie von Anwendung dieser Korrektur. Die Atomparameter sind in Tabelle 3 zusammengestellt.

(3) Der Vergleich der Zelldimension von $K_6[P_2W_{18}O_{62}]$.14H₂O (Dawson, 1953) mit (NH₄)₆[P₂W₁₈O₆₂].*n*H₂O zeigt, dass beide Strukturen

die gleiche Zelle haben. Da Dawson (1953) jedoch keine reduzierte Zelle verwendet hatte, wurde hier folgenden Achsentransformation

$$\begin{pmatrix} a \\ b \\ c \end{pmatrix}_{N} = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix} \quad \begin{pmatrix} a \\ b \\ c \end{pmatrix}_{K}$$

bzw. Koordinatentransformation

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix}_N = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & \overline{1} \\ 1 & 0 & \overline{1} \end{pmatrix} \quad \begin{pmatrix} x \\ y \\ z \end{pmatrix}_K.$$

 $N: (NH_4)_6 [P_2 W_{18} O_{62}] \cdot nH_2 O;$ $K: K_6[P_2W_{18}O_{62}].14H_2O$ (Dawson, 1953) vorgenommen.

Die auf diese Weise transformierten Koordinaten der Atome des Polyanions wurden als Startparameter benutzt. Mit anisotropen Temperaturfaktoren für die W-Atome und isotropen für die O-Atome konnte die Struktur des Polyanions bis zu einem R-Wert von 12,8% verfeinert werden. Aus einer anschliessenden Differenz-Fouriersynthese wurden die Lagen der sechs NH4-Ionen und von neun möglichen Kristallwassermolekülen entnommen. Die Berücksichtigung dieser Kationen- und Kristallwasserlagen ergab in den abschliessenden Verteinerungsrechnungen einen R-Wert von 11,4%. Die Atomparameter sind in Tabelle 4 zusammengestellt.

Bei den Verfeinerungsrechnungen aller drei Strukturen hatten die beobachteten Reflexe das Gewicht w=1, von den unbeobachteten wurden nur die mit $F_c > F_{\min}$ berücksichtigt. Ausser den Lagen der Poly-

Tabelle 5(a). Vergleich der (gemittelten) Z-Parameter (Å) der Polyanionen [PM09O31(H2O)3]³⁻, [P2M018O62]⁶⁻, $[PMO_{12}O_{40}]^{3-}$, $[PW_{12}O_{40}]^{3-}$ und $[P_2W_{18}O_{62}]^{6-}$ bezogen auf die (bzw. eine) (pseudo-) dreizählige Achse

Fixpunkt ist Z[M(3)] = 5,02 Å. Mit diesem Fixpunkt liegt im $[P_2W_{18}O_{62}]^{6-}$ -Polyanion die Pseudo-Spiegelebene in Z = +0,11 Å. Atombezeichnung wie im $[PMo_9O_{31}(H_2O)_3]^{3-}$ -Polyanion. { $[PMo_{12}O_{40}]^{3-}$: unveröffentlichte Werte d'Amour & Allmann (1975).}

	[PM09O31	$H_2O_3]^{3-1}$	$[P_2Mo_{18}O_{62}]^{6-}$ $[PMo_{12}O_{40}]^{3-}$		[PW ₁₂ O ₄₀] ³⁻	[P ₂ W ₁₈ O ₆₂] ⁶⁻	
	d'Amour & Allmann (1974)	Strandberg (1974)			Allmann & d'Amour (1975)		
	$Z \Delta Z$	$Z \Delta Z$	$Z \Delta Z$	Z ∆Z	Ζ	$Z \Delta Z$	
M(3)	5,02	5,02	5,02	5,02	5,02	5,02	
M(2) M(1)	2,15 = 0,53 1,62 = 0,53	2,17 1,56 > 0,61	2,15 1,69 > 0,46	$2,09 \\ 1,92 > 0,17$	2,00	2,02 1,94 > 0,08	
P	2,12	2,05	2,08	2,06	2,06	2,11	
O(1)	6,28	6,20	6,19	6,18	6,20	6,18	
O(2)	5,78	5,78	5,76	5,72	5,69	5,73	
O(3) O(4)	$3,70 \\ 3,87 > 0,17$	$3,71 \\ 3,86 > 0,15$	$3,69 \\ 3,82 > 0,13$	$3,76 \\ 3,79 > 0,03$	}3,77	$3,77 \\ 3,80 > 0,03$	
O(5)	3,61	3,61	3,67	3,60	3,59	3,66	
O(6) O(8)	1,94 > 0,41 2,35 > 0,41	$2,00 \\ 2,37 > 0,37$	$2,13 \\ 2,29 > 0,16$	$2,11 \\ 2,25 > 0,14$	}2,18	$2,32 \\ 2,34 > 0,02$	
O(7)	1,92	2,08	2,17	2,27	2,29	2,25	
O(9)	1,65	1,56	1,58	1,66	1,66	1,61	
O(10)	1,63	1,57	1,62	1,55	1,55	1,62	
O(11) O(12)	-0,00 > 0,01	-0,14 - 0,03 > 0,11	$-0,05 \\ 0,04 > 0,09$	$0,11 \\ 0,15 > 0,04$	0,13	$0,12 \\ 0,10 > 0,02$	

Tabelle 5(b). Vergleich der gemittelten M–M-Abstände (in Å) < 4,0 Å in den Polyanionen

$A_1 \\ A_2$	$= [PMo_9O_{31}(H_2O)_3]^{3-}$	(d'Amour & Allmann, 1974) (Strandberg, 1974)	$\sigma(Mo-Mo) = 0,007 \text{ Å}$ $\sigma(Mo-Mo) = 0,002$
B	$= [P_2 Mo_{18}O_{62}]^{6}$		$\sigma(Mo-Mo) = 0,003$
С	$= [P_2 W_{18} O_{62}]^{6}$		$\sigma(W-W) = 0,004$
D	$= [PW_{12}O_{40}]^{3}$	(Allmann & d'Amour, 1975)	$\sigma(W-W) = 0.006$
E	$= [PMo_{12}O_{40}]^{3}$	(d'Amour & Allmann, unveröffentlicht, 1975)	σ (Mo-Mo) = 0,003

 d_1 = über Pseudospiegelebene 3/m eckenverknüpfte MO₆-Oktaeder d_2 = eckenverknüpfte MO₆-Oktaeder des M-Dreiecks/M-Sechsecks d_3 = eckenverknüpfte MO₆-Oktaeder innerhalb des M-Sechsecks

 d_4 = kantenverknüpfte MO₆-Oktaeder innerhalb des M-Dreiecks

 d_5 = kantenverknüpfte MO₆-Oktaeder innerhalb des M-Sechsecks

	A_1	A_2	В	С	D	Ε
d_1			3,848	3,751		_
d_2	3,695	3,690	3,677 (3×)	3,711 (6×)		
-	3,906	3,933	$3,829(3 \times)$	•	2 601] 2 600
d_3	3,700	3,703	3,668	3,676	\$ 3,001	3,099
d_4	3,402	3,411	3,393	3,381	2 406	<u>]</u> 2 406
d_{s}	3,353	3,364	3,357	3,361	} 3,400	} 3,400

anionatome können nur noch die Lagen der Na⁺-Ionen als gesichert angesehen werden, da die Zuordnung der Elektronendichtemaxima in der Differenz-

Fig. 2. Lage der Mo-Dreiecke und gewellten Mo-Sechsecke im $[P_2Mo_{18}O_{62}]^{6-}$ -Polyanion. Die Lagen der Mo-Atome, besonders die Wellung des Mo-Sechseks ist im $[PMo_9O_{31}(H_2O)_{3}]^{3-}$ -Polyanion analog. Die Zahlen an den Kreisen sind die Nummern der Mo-Atome des

Kreisen sind die Nummern der Mo-Atome des $[P_2Mo_{18}O_{62}]^{6-}$ -Polyanions.

Fouriersynthese von $(NH_4)_6[P_2W_{18}O_{62}].nH_2O$ zu den NH_4^+ -Ionen nicht eindeutig ist, d.h. dass die Lagen einiger NH_4^+ -Ionen mit denen von Kristallwassermolekülen vertauscht werden können. Die Strukturbestimmung von $Na_3[PMO_9O_{31}(H_2O)_3].nH_2O$ wurde mit den Programmen des X-RAY-systems 70 (full-matrix L.Q.), die von $Na_4H_2[P_2MO_{18}O_{62}].nH_2O$ und $(NH_4)_6[P_2W_{18}O_{62}].nH_2O$ wurden soweit nicht anders angegeben mit den Programmen des 'NRC Crystallographic Programms for the IBM/360 System' (blockdiagonal L.Q.) durchgeführt. Die Atomfaktoren sind von Hanson, Herman, Lea & Skillmann (1964). Die anomale Dispersion der Mo- bzw. der W-Formfaktoren wurde nicht berücksichtigt.*

Diskussion

Die Struktur der Polyanionen $[PMo_9O_{31}(H_2O)_3]^{3-}$ und $[P_2M_{18}O_{62}]^{6-}$ kann man von der des Kegginmoleküls $[PM_{12}O_{40}]^{3-}$ (Eigensymmetrie $\overline{4}3m$, M = W bzw. 23, M = Mo; unveröffentlichte Ergebnisse von d'Amour & Allmann, siehe Tabelle 5) ableiten. Entfernt man vom 'Kegginmolekül' drei über eine dreizählige Achse eckenverknüpfte Oktaeder, so erhält man ein $[PMo_9O_{34}]^{9-}$ -Polyanion (von der maximal möglichen Eigensymmetrie 3m wird aber nur 3 verwirklicht). Dieses kann man über eine Pseudospiegelebene wie im $[P_2W_{18}O_{62}]^{6-}$ -Polyanion (Pseudosymmetrie $\overline{6}m2$), oder über eine zweizählige Achse wie im $[P_2Mo_{18}O_{62}]^{6-}$ -Polyanion (Pseudosymmetrie 32) zu einem Doppel-komplex verknüpfen. Der Aufbau dieser Polyanionen ist in Fig. 1(a), (b) dargestellt.

Fig. 1. (a) [PMo₉O₃₁(H₂O)₃]³⁻. (b) [P₂Mo₁₈O₆₂]⁶⁻. Die Zahlen in den Kreisen sind die Nummern der M-Atome (M= Mo, W), die anderen Zahlen sind die Nummern der O-Atome.

^{*} Die Listen der Strukturfaktoren sind bei der British Library Lending Division (Supplementary Publication No. SUP 31262: 21 pp., 1 microfiche) hinterlegt. Kopien sind erhältlich durch: The Executive Secretary, International Union of Crystallography, 13 White Friars, Chester CH1 1NZ, England.

Tabelle 6. M–O- und W–O-Abstände (Å)

(a) Na₃[PMo₉O₃₁(H₂O)₃].nH₂O, Mo-O-Abstände in Å. Erster Wert: d'Amour & Allmann (1974): $\sigma = 0.04$ Å. Zweiter Wert: Strandberg (1974): $\sigma = 0.009$ Å.

Mo(1)-O(11)*	1,63	1,70	Mo(2)-O(8)*	1,62	1,70	Mo(3)-O(1')	1,74	1,71
-O(6)*	1,69	1,71	-O(9')	1,79	1,83	-O(3')	1,81	1,78
-O(7)	1,89	1,94	-O(4)	1,84	1,81	-O(2')	1,82	1,83
-O(9)	1,99	1,97	-O(7)	1,85	1,89	-O(4)	2,06	2,08
-O(3)	2,20	2,26	$-O(12)H_2^*$	2,17	2,21	-O(2)	2,07	2,08
-O(10)†	2,34	2,31	-O(10)†	2,38	2,38	-O(5)†	2,42	2,42

* O-Atom nur an ein Mo-Atom gebunden (terminales O-Atom).

.

† O-Atom an zwei bzw. drei Mo- und ein P-Atom gebunden. Alle übrigen O-Atome sind an zwei Mo-Atome gebunden.

(b) $Na_4H_2[P_2Mo_{18}O_{62}]$. nH_2O , Mo-O-Abstände in Å; durch die pseudodreizählige Achse gleichwertige Abstände stehen nebeneinander. Das erste O-Atom (terminal) ist nur an ein Mo-Atom, das letzte an drei bzw. zwei Mo-Atome und ein P-Atom gebunden. Die O-Atome, die die beiden PMo_9O_{28} -Hälften miteinander verbinden, sind mit einem * gekennzeichnet.

Mo(1)-O(6)	1,71	Mo(5)-O(9)	1,65	Mo(4)-O(12)	1,69
-O(20)	1,79	-O(22)	1,80	-O(24)	1,79
-O(15)	1,89	-O(17)	1,90	-O(13)	1,90
-O(5)	1,90	-O(8)	1,90	-O(11)	1,90
-O(1')*	2,15	-O(3')*	2,13	-O(2)*	2,13
-O(14)	2,35	-O(16)	2,33	-O(18)	2,35
Mo(2)–O(4)	1,69	Mo(3) - O(7)	1,70	Mo(6)-O(10)	1,68
-O(1)*	1,75	-O(2')*	1,76	-O(3)*	1,77
-O(13)	1,88	-O(15)	1,88	-O(17)	1,90
-O(5)	1,95	-O(8)	1,94	-O(11)	1,93
-O(19)	2,16	-O(21)	2,13	-O(23)	2,14
-O(14)	2,33	-O(16)	2,33	-O(18)	2,31
Mo(7)O(26)	1,70	Mo(8)–O(30)	1,70	Mo(9)-O(28)	1,70
-O(19)	1,77	-O(23)	1,78	-O(21)	1,79
-O(27)	1,85	-O(31)	1,82	-O(29)	1,82
-O(24)	2,04	-O(22)	2,04	-O(20)	2,05
-O(31)	2,08	-O(29)	2,05	-O(27)	2,02
-O(25)	2,35	-O(25)	2,39	-O(25)	2,40

(c) $(NH_4)_6[P_2W_{18}O_{62}]$. nH_2O , W-O-Abstände in Å. Die ersten 12 bzw. die letzten sechs WO₆-Oktaeder sind auf Grund der Pseudosymmetrie $\overline{6m2}$ gleichwertig. Entsprechende Abstände stehen nebeneinander. $\sigma(W-O) = 0.04$ Å. Das jeweils erste O-Atom ist endständig, das letzte ist gleichzeitig an P und zwei oder drei W gebunden. Die O-Atome, die die beiden PW₉O₂₈O_{6/2}-Hälften miteinander verbinden, sind mit * gekennzeichnet.

W(1)—O(27) -O(20) -O(11) -O(14) -O(9)* -O(3)	1,73 1,89 1,91 1,94 1,97 2,34	$ \begin{array}{c} W(2) - O(-27) \\ - O(-20) \\ - O(-11) \\ - O(-14) \\ - O(9)^{*} \\ - O(-3) \end{array} $	1,64 1,91 1,90 1,96 1,86 2,35	W(3)O(30) -O(21) -O(6)* -O(12) -O(17) -O(2)	1,65 1,91 1,93 1,99 2,04 2,30	$ \begin{array}{c} W(4)-\!\!\!\!-O(-30) \\ -O(-21) \\ -O(6)^* \\ -O(-12) \\ -O(-17) \\ -O(-2) \end{array} $	1,71 1,89 1,87 1,97 1,91 2,30
W(5)O(28) O(22) O(8)* O(11) O(15) O(1)	1,74 2,05 1,86 1,91 1,87 2,32		1,75 1,93 1,95 1,92 1,93 2,33	W(7)O(31) -O(21) -O(13) -O(19) -O(5)* -O(2)	1,79 1,84 1,95 1,97 1,92 2,43		1,75 1,91 1,84 1,97 1,86 1,45
W(9)O(26) O(20) O(10)* O(13) O(18) \$ -O(3)	1,74 1,98 1,84 1,82 2,04 2,36	$ \begin{array}{c} W(10)-O(-26)\\ -O(-20)\\ -O(10)^{*}\\ -O(-13)\\ -O(-18)\\ -O(-3) \end{array} $	1,71 1,94 1,95 1,91 1,92 2,42	W(11)-O(29) -O(22) -O(12) -O(16) -O(7)* -O(1)	1,74 1,83 1,85 1,79 1,90 2,35	$ \begin{array}{c} W(12)-O(-29)\\ -O(-22)\\ -O(-12)\\ -O(-16)\\ -O(7)^{*}\\ -O(-1) \end{array} $	1,73 1,93 1,92 1,95 1,90 2,38
W(13)-O(-34) -O(-16) -O(-17) -O(-25) -O(-23) -O(-4)	1,60 1,90 1,92 1,92 1,94 2,37	$ \begin{array}{c} W(14)-O(-33)\\ -O(-14)\\ -O(-15)\\ -O(-23)\\ -O(-24)\\ -O(-4) \end{array} $	1,72 1,86 1,92 1,89 1,86 2,34	$ \begin{array}{c} W(15)-O(-32)\\ -O(-19)\\ -O(-18)\\ -O(-24)\\ -O(-25)\\ -O(-4) \end{array} $	1,67 1,88 1,90 1,95 1,90 2,39	W(16)-O(34) -O(16) -O(17) -O(25) -O(23) -O(4)	1,79 1,97 1,83 1,90 1,80 2,41
		W(17)-O(33) -O(14) -O(15) -O(23) -O(24) -O(4)	1,59 1,91 1,92 2,04 2,02 2,44	W(18)-O(32) -O(19) -O(18) -O(24) -O(25) -O(4)	1,78 1,86 1,84 1,78 1,95 2,41		

55g .

Tabelle 6 (Fort.)

(d) O-M-O-Bindungswinkel (°) und O-O-Abstände (Å) innerhalb der MO₆-Oktaeder. Gemeinsame Oktaederkanten sind mit *, 'Oktaederdurchmesser' sind mit † gekenn-zeichnet. Für die [P₂M₁₈O₆₃]⁶⁻-Polyanion wurden die auf Grund der Pseudosymmetrie 32 gleichwertigen Abstände bzw. Winkel gemittelt und die Bezeichnung vom [PMo₉O₃₁(H₂O)₃]³⁻-Polyanion übernommen. Im [P₂W₁₈O₆₂]⁶⁻-Polyanion sind auch noch die Oktaeder um W(1) und W(2) pseudosymmetriegleich und in dieser Tabelle entsprechend gegenübergestellt.

10(5)	167	85	72	81	76	2*) 0(5)	170	86	75	81	72	*		0(5)	172	6 83	73	85	73	*0
00	50	154	85	78		2,6		0(2	66	154	88	79		2,6]		0(2	102	15	87	91		2,59
0(4)		87	155		2,60	2,91		0(4)	101	84	156		2,61	2,89		(4)	102	86	157		2,69	2,89
	101	101		3,78†	2,64	2,65*		0(2)	102	100		3,79†	2,70	2,61*		0(2')	101	88		3,71†	2,63	2,59*
0(31)	108		2.80	2,66	3,78†	2,90		0(3')	104		2.75	2,57	3,73†	2,87		0(3')	103		2,65	2,56	3,73†	2,89
000		2,86	2.73	2,92	2,82	4,13†		0(1)		2,74	2,74	2,89	2,86	4,07†		0(1)		2,80	2,80	2,77	2,78	4,07†
Mo(3)	017	0(3')	0(2)	0(4)	0(2)	0(5)		Mo(3)	0(1)	0(3')	0(2)	0(4)	0(2)	0(5)		W(3)	0(1')	0(3')	0(2)	0(4)	0(2)	0(5)
000	83	172	71	82	86			0(10)	78	168	73	83	87			O(10)	82	172	74	84	83	
(J(4)	168	101	98	93		2,90		0(4)	165	103	66	92		2,88		O(4)	164	98	92	87		2,86
(,6)()	82	103	150		2,62	2,77		(,6)0	81	103	153		2,65	2,82		(,6)0	86	104	158		2,62	2,88
0(7)(82	103		3,52†	2,78	2,49*		0(1)	83	66		3,69†	2,79	2,55*		0(1)	90	98		3,73†	2,73	2,58*
0(8)	91		2.72	2,67	2,65	3,99†		O(8)	92		2,73	2,80	2,72	4,00†		O(8)	98		2,74	2,87	2,74	4,09†
0(12)		2,74	2,65	2,62	3,99†	3,02		O(12)		2,76	2,67	2,67	3,89†	2,84		O(12)		2,77	2,69	2,61	3,80†	2,83
Mo(2)	0(12)	0(8)	0(1)	(<u>)</u> 0	0(4)	O(10)		Mo(2)	0(12)	0(8)	0(1)	(,6)0	0(4)	O(10)		W(2)	0(12)	0(8)	0(1)	(<u>,6)</u> 0	0(4)	O(10)
$(10) = 1, 2^{\circ}$) 95	67	71	84	76		4°	0(10)	90	65	73	85	77			0(10)	83	71	74	84	83	
D-Mo-C) 20	92 1	81	77		,79	-0)=0,	O (3) C	167	91 1	83	81		.79))=1,5°	3 (3)	161	95 1	87	87		,85
5 Å; σ(C (9) Ο	٦ ار	66	50		61	,77 2	τ(O−Mo	(6) C	96	22	55	-	63	87 2	0-M-0	(6) C	90	2	57		99	88 2
(7) = 0,0(1)	8	2	-	52†	68 2,	49* 2,	,02 Å; c	0 (E)		1		73†	69 2,	55* 2,	17 Å; o(0 E	-	Ξ	Ξ	77†	72 2,	58* 2,
0-0) 00-0	, 6	10	6	1 3,	3	1† 2,	-0)=0	ی ٥	96	67	2	, с С	5 2,(8† 2,	0,0=(C	ی ٥	6	67	6	Э	5	6† 2,:
)) ³⁻ ;)0(6	<u>, 79</u>		2,7	2,8		4,0	.) a(0)) (102		2,7	2,7	2,7	3,9	a(0−1	š o	101		2,7	5 8	2,7	4,0
0(11 ²)31(H ₂ (•	2,50	2,66	2,79	3,82†	2,96	₈ O ₆₂] ^{6 –}	0(11)		2,69	2,72	2,71	3,87†	2,91	0 ₆₂] ^{6 -} ;	0(11)		2,76	2,71	2,68	3,76†	2,83
[PMo ₉ (Mo(1)	0(11)	0(0)	(<u>)</u> 0	(6)0	0(3)	0(10)	[P2M01	(I)0M	0(11)	000	0(1)	(6)0	(E)O	O(10)	[P ₂ W ₁₈ 1	W(1)	0(11)	(9)O	0(1)	(6)0	0(3)	O(10)

HEDWIG D'AMOUR

 $\begin{bmatrix} PMo_9O_{31}(H_2O)_{3}\end{bmatrix}^3 - \begin{bmatrix} P_2Mo_{18}O_{62}\end{bmatrix}^6 - \begin{bmatrix} P_2W_{18}O_{63}\end{bmatrix}^6 - \\ 1 & 2, 3, 5, 8, 9, 12 \\ 2 & 1, 4, 5 \\ 3 & 7, 8, 9 \\ 13, 14, 15, 16, 17, 18 \end{bmatrix}$

2

Das Merkwürdige bei dem Vergleich der Polyanionstrukturen von $[PMo_9O_{31}(H_2O)_3]^{3-}$ und $[P_2M_{18}O_{62}]^{6-}$ (M=W, Mo) ist der grosse Unterschied in der Wellung der M₆-Sechsecke (siehe Fig. 2 und Tabelle 5). Für M=Mo beträgt ΔZ [Z=absolute Koordinate in Richtung der (pseudo)-dreizähligen Achse] ungefähr 0,5 Å, während für M=W die Wellung auf $\Delta Z=0,08$ Å reduziert ist. Bei der Bildung des $[P_2Mo_{18}O_{62}]^{6-}$ -Polyanions, die wahrscheinlich durch Zusammenlagerung zweier $[PMo_9O_{31}(H_2O)_3]^{3-}$ -Polyanionen unter Austritt von sechs H₂O-Molekülen erfolgt, bleibt die Wellung der Mo-Sechsecke erhalten. Ähnliche Verhältnisse liegen auch im 'Kegginmolekül' $[PM_{12}O_{40}]^{3-}$ vor. Während im kubischen (H₅O₂)₃[PW₁₂O₄₀] (Noe-Spirlet, Busing, Brown & Levy, 1974) die Eigensymmetrie 43*m* vorliegt und diese als Pseudosymmetrie auch im triklinen NaH₂[PW₁₂O₄₀].*n*H₂O (*n*~12–14) (Allmann & d'Amour, 1975) noch gut erfüllt ist, erniedrigt sich diese im isomeren H₃[PMo₁₂O₄₀].*n*H₂O (*n*~12–14) (d'Amour & Allmann, noch unveröffentlicht) auf 23

Tabelle 7. M–O–M-Winkel (°) für Brücken-O-Atome

* O an zwei Mo gebunden (kantenverknüpfte Oktaeder); † O an 2(3) Mo und ein P gebunden; ohne Bezeichnung: eckenverknüpfende O-Atome. Für die beiden $[P_2MO_{18}O_{62}]^{6-}$ -Polyanionen wurde entsprechend der Pseudosymmetrie 32 gemittelt. In den $[P_2M_{18}O_{62}]^{6-}$ -Polyanionen verknüpfen die O_B -Atome die beiden $[PM_9O_{28}O_{6/2}]$ -Hälften miteinander. Die Bezeichnung der Atome ist wie in Fig. 3.

	[PM0 ₉ O ₃₁ (H ₂ O) ₃] ³⁻	[P2M018O62] ⁶⁻	[P ₂ W ₁₈ O ₆₂] ⁶⁻
Mo(3)-O(2)-Mo(3')*	122	122	124
$Mo(1) - O(7) - Mo(2)^*$	127	122	123
$Mo(3) - O(5) - Mo(3')^{\dagger}$	89	91	90
Mo(1)-O(10)-Mo(2)†	90	92	91
Mo(3) - O(3) - Mo(1)	154	155	151
Mo(3) - O(4) - Mo(2)	143	147	152
Mo(1)-O(9)Mo(2)	156	152	150
$Mo(1) - O_B - Mo(2')$		162	162
Mo(3)-O(5)P	126	125	125
Mo(1)-O(10)-P	132	130	127
Mo(2)-O(10)-P	126	127	126

Fig. 3. Numerierung der Atome in den drei Polyanionen $[P_2W_{18}O_{62}]^{6-}$, $[P_2M_{018}O_{62}]^{6-}$ und $[PM_0O_{31}(H_2O)_{3}]^{3-}$. Die Wbzw. Mo-Atome sind durch Kreise gekennzeichnet. Es sind fortlaufend von oben nach unten die Schichten der O-Atome, die etwa senkrecht zur (pseudo-)dreizähligen Achse liegen, gezeichnet. Ausgezogene Linien sind Oktaederkanten, andere O-O-Kontakte sind gestrichelt gezeichnet.

(vgl. Tabelle 5). Der Grund für das im $[P_2W_{18}O_{62}]^{6-}$ -Polyanion kaum gewellte W-Sechseck kann nicht durch den Unterschied der Ionenradien (Mo⁶⁺: 0,60 Å, W⁶⁺: 0,60 Å; Shannon & Prewitt, 1969, 1970) erklärt werden. Vielmehr wird wohl die grössere Ausdehnung der 5*d*-Orbitale bei W⁶⁺ zu einer stärkeren Harmonisierung der W-O-Einfachbindungen (~1,92 Å) führen und die schwächere Kompressibilität der inneren Elektronen bei W⁶⁺ eine ausgeprägte Asymmetrie dieser Bindungen verhindern. In den schwächeren Bindungen (O an drei und mehr Atome, gebunden $d\sim 2,3-2,4$ Å) zeigen W⁶⁺ und Mo⁶⁺ kaum Unterschiede, ebenso wie in den Bindungen von ~1,70 Å Länge, die einen erheblichen Doppelbindungsanteil haben.

Vermutlich existiert aus diesen Gründen auch ein $[PW_9O_{31}(H_2O)_3]^{3-}$ -Polyanion nicht. Die Wellung des Mo-Sechsecks in den Polyanionen [PM0₉O₃₁(H₂O)₃]³⁻ und $[P_2Mo_{18}O_{62}]^{6-}$ vollziehen jedoch nur die Mo-Atome (siehe Fig. 2) und etwas die daran gebundenen terminalen O-Atome und nicht die übrigen O-Atome, so dass diese Wellung in Fig. 1(a), (b) nicht sichtbar wird (siehe auch Tabelle 5). Durch die verschiedenen Z-Werte der Mo-Atome in den Mo-Sechsecken gibt es sowohl unterschiedliche Mo-Mo-Abstände zwischen den über gemeinsame Oktaederecken verknüpften Mo-Atomen des Sechsecks und des Dreiecks [3,68 und 3,83 Å, siehe Tabelle 5(b)] als auch unterschiedliche Mo-O_{Brücke}-Abstände (1,79 und 2,14 Å). So haben auch die im [PMo₉O₃₁(H₂O)₃]³⁻ Polyanion endständigen O-Atome [O(11) und O(12)], die im [P2Mo18O62]6--Polyanion die beiden Hälften miteinander verknüpfen [O(1)-O(3)], sehr unterschiedliche Abstände zu den entsprechenden Mo-Atomen (1,63 und 2,17 Å); Strandberg (1974) gibt sogar einen etwas längeren Abstand Mo(2)–O(12) von 2.21 Å an. Aus diesem langen Abstand wurde geschlossen, dass O(12) zweifach protoniert sein muss (H2O-Molekül). Die bzw. d'Amour & Allmann, noch unveröffentlicht) lassen sich in verschiedene Typen einteilen [siehe Tabelle 5(b)]. Im $[PW_{12}O_{40}]^{3-}$ -Polyanion treten auf Grund der Eigen- bzw. Pseudosymmetrie $\overline{4}3m$ nur zwischen kanten- und eckenverknüpften WO6-Oktaedern unterschiedliche W-W-Abstände <4,0 Å auf, wegen der Wellung der Mo-Sechsecke bzw. der anderen Pseudosymmetrie $\overline{6m2}$ im $[P_2W_{18}O_{62}]^{6-}$ -Polyanion spalten diese M-M-Abstände in den anderen Polyanionen auf.

Die M-O-Abstände der drei Polyanionstrukturen sind in Tabelle 6(a)-(c) zusammengestellt, die Numerierung der Atome ist in Fig. 3 angegeben. In Tabelle 6(d) sind die O-O-Abstände innerhalb der MO₆-Oktaeder, sowie die O-M-O-Bindungswinkel angeben. Für die beiden $[P_2M_{18}O_{62}]^{6-}$ -Polyanionen wurden einzelne Werte entsprechend der Pseudosymmetrie 32 gemittelt. Die Mittelwerte der P–O-Abstände in den $[P_2M_{18}O_{62}]^{6-}$ -Polyanionen stimmen sehr gut überein, M = W: 1,56 (4) Å, M = Mo: 1,55 (2) Å (einzelne Werte siehe Tabelle 8), nur im $[PMo_9O_{31}(H_2O)_3]^{3-}$ -Polyanion ist der P–O-Abstand recht kurz 1,50 (4) Å (Strandberg: 1,54 (1) Å).

Tabelle 8. P-O-Abstände

Na ₃ [PM	09O31(H2	$[O]_{3}].n$	H₂O								
σ(P-O): [erster V [zweiter Na₄H ₂ [I	[]=0.04 Å = 0.02 = 0.02										
(NH ₄) ₆ [=0,04										
P[Mo9	O62] ^{6 -}										
P-O(5) P-O(10)	1,49 Å	1,53	Å P-O(25) P-O(14)	1,59 Å 1.52							
P-O(10') P-O(10'')	1,50	1,57	P-O(16) P-O(18)	1,54							
Mittel:	1,50	1,56	Mittel:	1,55							
[P ₂ W ₁₈ O ₆₂] ⁶⁻											
P(1)-O(4) P(1)-O(2) P(1)-O(1) P(1)-O(3)	1,50 1,5 1,5 1,5 N	0Å 4 8 8 littel:	P(2)-O(-4) P(2)-O(-2) P(2)-O(-1) P(2)-O(-3) 1,55 Å	1,59 Å 1,57 1,55 1,52							

Wie schon oben angedeutet, treten zwischen den beiden Strukturbestimmungen des $[PMo_9O_{31}(H_2O)_3]^{3-}$ -Polyanions geringfügige Unterschiede auf. Die Lagen der Mo-Atome (entsprechend transformiert) beider Strukturbestimmungen sind in Tabelle 2 gegenübergestellt. In der Differenz-Fouriersynthese waren, wie schon erwähnt, die Elektronendichtemaxima einiger O-Atome aufgespalten bzw. gestreckt, Strandberg (1974) berichtet jedoch nichts dergleichen. Abgesehen von Mo-O-Abständen zu 'aufgespaltenen' O-Atomen, stimmen die Mo-O-Abstände beider Strukturbestimmungen innerhalb der Fehlergrenze überein.

Die Art der Kationen und die Anzahl der Kristallwassermoleküle sind nicht immer eindeutig. Für das [PMo₉O₃₁(H₂O)₃]³⁻-Polyanion erfolgt der Ladungsausgleich durch Na+-Ionen (eine Mikrosondenbestimmung ergab einen Wert von 4 ± 2 Gew.% Na, theor: 4,2%), für das $[P_2Mo_{18}O_{62}]^{6-}$ nur zu $\frac{2}{3}$ durch Na⁺-Ionen, die restliche Ladung kompensieren wahrscheinlich $(H_3O)^+$ oder $(H_5O_2)^+$ -Komplexe. Die Ladung des $[P_2W_{18}O_{62}]^{6-}$ -Polyanions wird durch NH⁺-Ionen ausgeglichen. Die Lagen der Na⁺-Ionen konnten, auch wenn für Na₄H₂[P₂Mo₁₈O₆₂].nH₂O keine Analysenwerte für den Na-Gehalt vorlagen, eindeutig auf Grund der kurzen Na-O- bzw. Na-H₂O-Abstände bestimmt werden (mittlerer Na-O-Abstand: 2,44 (4) Å). Bei den NH₄⁺-Lagen in der Struktur von $(NH_4)_6[P_2W_{18}O_{62}]$. nH_2O ist jedoch eine Vertauschung von NH₄⁺- und H₂O-Lagen möglich. Da das Kristallwasser in allen drei Strukturen vermutlich zeolithischen Charakter hat [siehe auch Evans (1971), Weakley (1974)], war es nicht möglich, Anzahl und Lagen der H_2O -Moleküle genau festzulegen, deshalb kann das *n* in den Formeln nur näherungsweise angeben werden.

Professor Dr J. Fuchs danke ich für die Überlassung der Kristalle von $(NH_4)_6[P_2W_{18}O_{62}].nH_2O$, Dr Christenhuss für die Mikrosondenuntersuchung des Na₃ $[PMo_6O_{31}(H_2O)_3].nH_2O$ und Professor R. Allmann für viele Diskussionen bei der Anfertigung dieser Arbeit. Mein Dank gilt auch der Deutschen Forschungsgemeinschaft für die finanzielle Unterstützung.

Literatur

- ALLMANN, R. & D'AMOUR, H. (1974). Coll. Abs. Suppl. S. 19, 2nd Eur. Cryst. Meeting, Keszthely.
- ALLMANN, R. & D'AMOUR, H. (1975). Z. Kristallogr. Im Druck.

D'AMOUR, H. & ALLMANN, R. (1974). Naturwissenschaften, 61, 31.

DAWSON, B. (1953). Acta Cryst. 6, 113-126.

- EVANS, H. T. (1971). Perspect. Struct. Chem. 4, 1-59.
- GERMAIN, G., MAIN, P. & WOOLFSON, M. M. (1970). Acta Cryst. A27, 368-376.
- HANSON, H. P., HERMAN, F., LEA, J. D. & SKILLMAN, S. (1964). Acta Cryst. 17, 1040–1044.
- NOE-SPIRLET, M.-R., BUSING, W. R., BROWN, G. M. & LEVY, H. A. (1974). Abs. S. 267, Amer. Cryst. Assoc. Summer Meeting, Univ. Park, Pennsylvania.
- SHANNON, R. D. & PREWITT, C. T. (1969). Acta Cryst. B25, 925–946.
- SHANNON, R. D. & PREWITT, C. T. (1970). Acta Cryst. B26, 1046–1048.
- STRANDBERG, R. (1974). Acta Chem. Scand. A28, 217–225.
- WEAKLEY, T. J. R. (1974). Struct. Bond. 18, 131-176.
- WU, H. (1920). J. Biol. Chem. 43, 189.

Acta Cryst. (1976). B32, 740

Die Kristallstruktur des Tributylammoniumdekawolframats $[(C_4H_9)_3NH]_4W_{10}O_{32}^*$

VON JOACHIM FUCHS, HANS HARTL, WOLFGANG SCHILLER UND UWE GERLACH

Institut für Anorganische Chemie der Freien Universität Berlin, 1 Berlin 33, Deutschland (BRD)

(Eingegangen am 27. Mai 1975; angenommen am 16. Juli 1975)

Tributylammonium decatungstate, $[(C_4H_9)_3NH]_4W_{10}O_{32}$, crystallizes in space group $P2_1/c$ with $a = 12\cdot 149$ (6), $b = 13\cdot 185$ (6), $c = 24\cdot 849$ (6) Å, $\beta = 95\cdot 36$ (10)°, V = 3963 Å³ and Z = 2. The crystal structure was determined by the heavy-atom method and refined by the least-squares method to $R = 7\cdot 5$ % for 4881 reflexions including 1587 unobserved ones. In the decatungstate anion two W_5O_{18} units are bonded mirrorsymmetrically through four corner-sharing O atoms with formation of an empty octahedral space. In the W_5O_{18} unit five distorted WO_6 octahedra are bonded via common edges with one O atom common to each of them. The symmetry of the anion $W_{10}O_{32}^{4-}$ is nearly 4/mmm. The decatungstate ions are connected to four tributylammonium cations via hydrogen bonds. The infrared and Raman spectra are discussed. Diffuse scattering was observed on films taken with long exposures. It could be shown that the form and intensity of the diffuse scattering are related to the structure by the difference Fourier transform of the $W_{10}O_{32}^{4-}$ anions. There exists intermolecular coupling in one direction.

Einleitung

Beim Ansäuern einer Alkaliwolframatlösung entsteht das Oxidhydrat $WO_3.2H_2O$. Der Übergang vom monomeren WO_4^{2-} zum hochmolekularen Endprodukt verläuft über niedermolekulare Zwischenstufen, über Polyanionen. Zwei von ihnen sind verhältnismässig stabil und seit längerem bekannt. Jander & Krüerke (1951) berichten über das Parawolframation *A*, das momentan beim Ansäuern einer Wolframatlösung (in optimaler Ausbeute bei Zugabe von 7H⁺/WO₄²⁻) entsteht und über ein Metawolframation *A*, das sich bei einem höheren Ansäuerungsgrad (>9H⁺/WO₄²⁻) bildet. Während weitgehende Einmütigkeit darüber besteht, dass es sich beim Parawolframation A um ein Hexawolframation, $[HW_6O_{21}.aq]^{3-}$ handelt (Souchay, 1943; Sasaki, 1961; Glemser & Höltje, 1965), war der Aggregationsgrad des bei höheren Säuregraden auftretenden Polyanions lange umstritten. Von Jander & Krüerke wurde es als Hexameres, $[H_3W_6O_{21}.aq]^{3-}$ von Glemser & Höltje als Dodekawolframation,

 $[W_{12}O_x(OH)_y]^{z-}$, beschrieben. Erst in den letzten Jahren wurde es als Dekawolframation, $W_{10}O_{32}^{4-}$, erkannt (Birkholz, Fuchs, Schiller & Stock, 1971).

Einkristalle von Salzen dieser Polysäuren konnten aus wässriger Lösung bisher nicht erhalten werden. Lässt man angesäuerte Wolframatlösungen einige Zeit stehen, so wandeln sich die primär entstandenen Polyanionen in thermodynamisch stabilere Teilchen um. Aus dem Parawolframation A entsteht über mindestens ein Zwischenprodukt das Parawolframation Z,

^{*} Über die Anionenstruktur wurde berichtet: Fuchs, Hartl & Schiller (1973).